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Abstract

We show that the recently introduced L1TV functional can be used to ex-
plicitly compute the flat norm for co-dimension one boundaries. Furthermore,
using L1TV, we also obtain the flat norm decomposition. Conversely, using the
flat norm as the precise generalization of L1TV functional, we obtain a method
for denoising non-boundary or higher co-dimension sets. The flat norm decom-
position of differences can made to depend on scale using the flat norm with
scale which we define in direct analogy to the L1TV functional. We illustrate
the results and implications with examples and figures.

1 Introduction

In this research announcement, we point out that the L1TV functional, introduced
and studied in the continuous setting in [3, 12, 1, 13] and earlier in the discrete setting
in [2, 9], provides a beautiful way of computing both the value of, and the optimal
decomposition required by, the flat norm from geometric measure theory.

The L1TV functional was introduced as an improvement to the now classic Rudin-
Osher-Fatemi total variation based denoising. Among its many nice properties are
the way it handles binary images, making it useful for shape processing. Theoretically
speaking, the clean geometric structure of the functional and its minimizers is very
attractive. See [12, 1] for details.
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Joan Glaunès was, as far as we know, the first to suggest and use the flat norm
from geometric measure theory as a distance in shape space. In his dissertation [6]
and a couple of application papers [11, 5] with collaborators, the dual formulation of
the flat norm is used to compute distances between shapes.

For maximum usefulness to those without much background in geometric measure
theory, we will include expository examples and a bit more explanation than we would
for those with that background. In several longer papers with co-authors Allard,
Esedoglu and Yin, we will explore the full implications and technical details. We end
this paper with an outline of some of those directions.

2 L1TV gives the Flat Norm

The L1TV functional introduced and studied in [3] is given by:

F (u) =

∫
|∇u|dx + λ

∫
|u− u0|dx (1)

where u and u0 are functions from Rn (often R2) to R with u0 being the input
or measured function (e.g. image intensity). The optimal u minimizing (1) can be
thought of as a “denoised” version of u0. Typically, one chooses the parameter λ based
on noise levels since this choice effectively chooses the scale below which features or
oscillations are ignored. In the case that the input function is binary, Chan and
Esedoglu observe that the functional reduces to:

F λ
CE(Σ) = Per(Σ) + λ|Σ M Ω|. (2)

where M denotes the symmetric difference. Now, let Σ(Ω, λ) be a binary minimizer
of (2). I.e.

Σ(Ω, λ) ≡ argmin F λ
CE(Σ) = Per(Σ) + λ|Σ M Ω|. (3)

For our convenience, we record the optimal decomposition of Ω into {Σ(Ω, λ) and
(Σ(Ω, λ) M Ω)} as the pair {∂Ω, Σ(Ω, λ) M Ω}.

The flat norm of an n-current T , denoted by F(T ), is given by

F(T ) ≡ min
S
{M(S) + M(T − ∂S)}) (4)
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where S varies over a suitable set of n+1-currents and M is the mass of the indicated
currents. We refer to {T, S} as the flat norm induced, optimal decomposition. We
will denote the current carried by the manifold or rectifiable set E, by TE or SE. (One
can informally think of currents as oriented submanifolds and mass as n-volume, but
for those without experience with currents, we suggest focusing the examples in the
next section.) Now for results.

Theorem 2.0.1. For the current T∂Ω,

F(T∂Ω) = F 1
CE(Σ(Ω, 1)) (5)

and
{T∂Ω, SΣ(Ω,1)MΩ} (6)

is the optimal decomposition that the flat norm requires.

Proof. This is a special case of Theorem 2.0.3.

This immediately suggests a very useful generalization of the flat norm which we
call the flat norm with scale.

Definition 2.0.2.
Fλ(T ) ≡ min

S
{λM(S) + M(T − ∂S)}) (7)

It is known that the λ controls very precisely the maximum curvature of T − ∂S.
We get the obvious scaled version of the first result:

Theorem 2.0.3. For the current T∂Ω,

Fλ(T∂Ω) = F λ
CE(Σ(Ω, λ)) (8)

and
{T∂Ω, SΣ(Ω,λ)MΩ} (9)

is the optimal decomposition that the flat norm with scale requires.
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Proof. The proof is really simply checking that the picture one can draw holds after
the definitions of mass (M) and perimeter (Per) are used to translate the picture into
analytic terms. Very briefly, we have:

F λ
CE(Σ) = λ|Σ M Ω|+ Per(Σ)

= λM(SΣMΩ) + M(T∂Σ)

= λM(SΣMΩ) + M(T∂Ω − ∂SΣMΩ)

Figure 1 illustrates this pictorially.

- ∂SΩMΣT∂ΩT∂Σ =

T∂Ω

T∂Σ

S

= λM(SΣMΩ) + M(T∂Ω − ∂SΣMΩ)

= λM(SΣMΩ) + M(T∂Σ)

F λ
CE(Σ) = λ|Σ M Ω| + Per(Σ)

Figure 1: In this figure we illustrate the translation of the L1TV view to the flat
norm view. The perimeter of Σ becomes the mass of T∂Ω − ∂SΣMΩ and the volume
of Σ M Ω becomes the mass of SΣMΩ. Note: this figure does not depict a minimizer.
Rather, we depict Ω and any candidate Σ.
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Our final observation is that the flat norm with scale gives us the same decom-
position as we would get if we first scaled T , computed the decomposition and then
reversed the scaling. More precisely

Lemma 2.0.4. Denote the optimal Fλ decomposition by {T, S}λ. Then

{T, S}λ = d 1
λ
#{dλ#(T ), dλ#(S)} (10)

where dλ denotes the λ-dilation of Rm, and dλ#(TM) = Tdλ(M).

Proof. The minimizing decomposition {T, S}λ which minimizes λM(S)+M(T −∂S)
also minimizes λnM(S)+λn−1M(T −∂S) = M(dλ#S)+M(dλ#(T −∂S)). Therefore,
to get the minimizer for Fλ run the optimization required by F1 using dλ#(T ) as input,
and then contract with d 1

λ
#.

We now discuss applications and examples with pictures which should clarify
things for those with less exposure to geometric measure theory.

3 Micro-tutorial on Currents and the Flat Norm

If you know something about currents and have a clear picture of the flat norm,
this section can be skipped. The reference for this section is Frank Morgan’s nice
introduction [8]. The definitive, though formidable, treatise for a fair bit of geometric
measure theory is still Federer’s 1969 tome [4]. References between Morgan and
Federer include [7, 10].

Rectifiable sets Ann-rectifiable subset N of Rm is the union of 1) an Hn negligible
set and 2) a countable collection of subsets of C1n-submanifolds of Rm such
that Hn(N) < ∞. (Hn is then-dimensional Hausdorff measure.) Intuitively, an
n-rectifiable set looks a great deal like an n-manifold at most of its points.

Currents n-Currents in Rm, denoted Dn, are the duals to Dn, the smooth, com-
pactly supportedn-forms on Rm. We restrict ourselves to integer multiplic-
ity rectifiable currents T , which have the following representation: T (φ) =∫

N
Θ(x) 〈φ(x), ξ(x)〉 dHn,∀φ ∈ Dn where N is an n-rectifiable set in Rm, Θ(x)

is an integer multiplicity density function, always ±1 in this paper, φ is the form
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T is operating on, and ξ(x) is then-vector defining the orientation on N . Chang-
ing the sign of the density function has the effect of reversing the orientation
on N which can also be achieved by replacing ξ with −ξ.

Currents are naturally equipped with a boundary operator, ∂T (φ) ≡ T (dφ).
∂T is therefore an (n− 1)-current which operates on (n− 1)-forms. (Note the
consistency of this definition with Stokes’ theorem.)

Intuitively, a current is an oriented manifold or union of oriented manifolds, each
with a oriented boundary whose orientation is inherited from the orientation of
the manifold. (There are of course wild beasts in the current menagerie, but one
can go a long ways with unions of C1 manifolds with boundary.) See Figure 2.

The Current TM showing orientation

Manifold M , with boundary ∂M

of TM and ∂TM

Figure 2: Example 2-current TM . Notice that ∂TM = T∂M . The orientation on the
boundary ∂M is simply that inherited from the orientation on M .

Mass and the Flat Norm The mass of a current is defined as

M(T ) = sup
|φ|≤1,φ∈Dn

T (φ). (11)
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Informally, the mass is simply then-dimensional volume of the rectifiable set
carrying then-current. The flat norm is defined in two equivalent ways:

F(T ) = min
S∈Dn+1

(M(S) + M(T − ∂S)) (given above) (12)

and
F(T ) = sup

|φ|≤1,|dφ|≤1,φ∈Dn

(T (φ)) (mentioned above) (13)

(This equivalence is proved in Federer (4.1.12 in [4]) where it is called the flat
seminorm.) The corresponding dual definition of the flat norm with scale is
given by

Fλ(T ) = sup
|φ|≤1,|dφ|≤λ,φ∈Dn

(T (φ)) (14)

Examples of the flat norm decomposition The flat norm involves the optimal
decomposition of the n-current T into an n-current (T − ∂S) and an (n + 1)-
current S. (We use the term decomposition in reference to the fact that T − ∂S
and S are the components explicitly measured by the flat norm, even though
T = (T − ∂S) + ∂S rather than T = (T − ∂S) + S.) See Figure 3.

Examples of maximizing forms The dual formulation of the flat norm involves
finding the supremum over appropriately constrained forms. Figure 4 shows a
maximizing form for the 2-dimensional disk of radius r. We will discuss the
computation of optimizing forms and the extraction of S from those optimizing
forms in section 4.3

Relation of the flat norm to L1 The flat norm is very much like the L1 norm for
small differences between currents. The value of the flat norm of a difference
between two currents ends up (roughly) being the L1 difference between the
close parts plus the sum of the n-volumes of what is left. See Figure 5.

4 Applications and Illustrating Examples

The value of the above results is fully realized by exploring their use in applications
to images and shapes. As observed by Glaunès and others, the flat norm is a very
natural candidate for distances between shapes. We now very briefly explore and
illustrate applications of the above observations.
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S
T − ∂S

T

Figure 3: Example flat norm decomposition. T is the 1-current we are computing the
flat norm of, and S gives the optimal decomposition into S and T − ∂S. Finally, the
flat norm is simply M(S) + M(T − ∂S) = length of the right-most curve and area of
the red region.

4.1 Generalized Flat Norm: flat norm with scale

As mentioned in section 2, by letting the λ 6= 1, one has a natural way to vary the
intrinsic scale in the flat norm.

Fλ(T∂E) ≡ min
S
{λM(S) + M(T∂E − ∂S)}

= F λ
CE(E)

where T∂E represents ∂E. The main point here is that this is easy to compute, given
the connection to the L1TV functional. Varying λ gives us the ability to choose what
scale is big and worth keeping. See Figure 6.

4.2 Flat norm via L1TV

We can use the L1TV functional to very easily calculate both the flat norm of differ-
ences between surfaces which are boundaries and the optimal decomposition of that
difference into surface and area parts. (See for example T1 and T2 and the optimal
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Maximizing form φ for disk of radius r

φ = x
r
dy − y

r
dx

Figure 4: A maximizing form for the disk in 2-D. This form satisfies the constraints
as long as 2

r
≤ λ. The λ is, of course, the scale in the flat norm with scale introduced

above.
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T2T1
T2T1

T1

T2

(T1 − T2)− ∂S

S
S

-
-

Figure 5: The flat norm of the difference between these two currents is the sum of
the area of red region (L1 like) and the length of the loop that is left.
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λ >> 1 λ << 1

Figure 6: Flat norm decomposition with scale λ:

S in Figure 12). In Figure 7 the decomposition of a boundary current T∂Ω into the
diminished boundary T∂Σ and the symmetric difference current SΣMΩ is illustrated.

4.3 L1TV by the dual form of the flat norm

The dual formulation of the flat norm can be used to compute L1TV minimizers. The
following results establish that maximizing forms (or maximizing sequences of forms)
contain the decomposition into S and T − ∂S.

Proposition 4.3.1. Suppose that T (φ) = F (T ) = min
S

(M(S) + M(T − ∂S)), where

φ is a smooth, compactly supported n-form satisfying |φ| ≤ 1, |dφ| ≤ 1, and T is an
n-rectifiable current with density Θ = 1 Hn almost everywhere, then on the support
of S, |dφ| = 1, and on the support of T − ∂S, |φ| = 1.

Proof. For a minimizing choice of S, we have that

T (φ) = F (T ) = M(S) + M(T − ∂S)

T (φ) = ∂S(φ) + (T − ∂S)(φ)
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T∂Σ = T − ∂S

T = T∂Ω

S = SΣMΩ

and

Figure 7: A simple reinterpretation of the L1TV input and minimizer gives us the
flat norm of T∂Ω and the decomposition into the diminished boundary T∂Σ and the
symmetric difference current SΣMΩ.

and
∂S(φ) = S(dφ)

so that
S(dφ) + (T − ∂S)(φ) = M(S) + M(T − ∂S) (15)

Now since φ is smooth, |φ| ≤ 1, and |dφ| ≤ 1, we immediately get that |φ| = 1 on
T − ∂S and |dφ| = 1 on S.

See Figure 8 for an example maximizing form. Note that when S is not unique,
this proposition implies that |dφ| = 1 on the union of supports of all possible mini-
mizing S’s. If we do not have a maximizing form, we can use the following modified
proposition together with the fact that there will be sequence of forms φi such that
T (φi) + εi = F (T ), εi > 0, and εi → 0:

Proposition 4.3.2. suppose that T (φ) + ε = F (T ) = min
S

(M(S) + M(T − ∂S)),

where φ is a smooth, compactly supported n-form satisfying |φ| ≤ 1, |dφ| ≤ 1, and T
is an n-rectifiable current with density Θ = 1 Hn almost everywhere, then M(S)−ε ≤
S(dφ) ≤ M(S) and M(T − ∂S)− ε ≤ (T − ∂S)(φ) ≤ M(T − ∂S).
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Minimizing S in Red

T in Blue

Maximizing form φ

Figure 8: Example of a maximizing form for a square T as input. On the right hand
side of the figure, details of the form (which we visualize as a vector field) are shown.
On T − ∂S, |φ| = 1 everywhere and on S (red), |dφ| = 1 everywhere, while off of
these sets, both |φ| < 1 and |dφ| < 1.
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This modified proposition is necessary since there are easily constructed examples
having no smooth maximizing form. In fact, the example shown in Figure 8 is not
actually smooth. The optimizing dφ we show is actually Lipschitz, so it can be arbi-
trarily well approximated by smooth forms even though it is not itself smooth. The
non-smoothness originates at the points of T − ∂S where the circular arcs (tangen-
tially) join the sides of the square. At these points, the boundary is merely C1,1.

We now state a conjecture, the confirmation of which will be very useful for
computations.

Conjecture 4.3.3. Suppose that T is integer density rectifiable with rectifiable bound-
ary ∂T and that both T and ∂T have finite mass. Suppose Φ is the collection of all
Lipschitz forms φ maximizing T (φ) and satisfying |φ| ≤ 1 and |dφ| ≤ 1. Define X
to be the closure of the set on which |dφ| = 1 for every φ ∈ Φ. Finally, define S to
be the collection of all optimizing currents S such that F(T ) = M(S) + M(T − ∂S).
Then

(a) There is an S ∈ S such that both S and ∂S are integer density rectifiable.

(b) Φ 6= ∅

(c) X =
⋃

S∈S
support(S)

(d) When a point t ∈ support(T ) is in the interior of X, then for each φ ∈ Φ the
orientation of dφ will switch sign on support(T ) at t.

(e) |φ| = 1 on support(T − ∂S).

Part (a) says that although we are not constraining the minimizing currents to be
rectifiable, there is at least one in the set of minimizers that is. Part (b) says that
there are always maximizing forms if we permit them to be merely Lipschitz instead
of smooth. Part (c) enables us to see where the possible locations for an S might be,
and part (d) helps us decompose these possible places into individual candidates for
S. Finally, part (e) gives us T − ∂S.

A very simple example where Lipschitz forms are necessary and sufficient for
optimality is the case in which the current is three equally spaced circles on a torus.
See Figure 9. Note that the metric on the torus is chosen such that the circles are
parallel. Figure 10 shows the f of a Lipschitz maximizing form f(x)dy. In the case
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shown (i.e. equal spacing between circles) we can’t maximize with a smooth form
and a maximizing sequence must approach the form plotted in Figure 10. In this
case, the region between the x = 0 and x = a circles or the region between the x = a
and x = 2a circles is the optimal S. This non-uniqueness is taken into account in
the above conjecture. Finally, the above propositions, example and conjecture have

x

y

x = 0 x = a x = 2a

Figure 9: The 3 circles example. The metric is chosen so that the circles are parallel
to each other. Optimal S can be either the region between the x = 0 and x = a
circles or the region between the x = a and x = 2a circles.

obvious analogs for the flat norm with scale.

4.4 L1TV for co-dimension > 1

We can use the dual formulation of the flat norm to extend the L1TV denoising to
sets which are not boundaries or have co-dimension greater than 1. This depends on
extracting the optimal decomposition from the optimizing form, as discussed in the
previous subsection. Figure 11 shows the decomposition of a 1-current in 3D that
results when the flat norm is computed. This example actually illustrates both of
the useful generalizations possessed by the flat norm decomposition: regularization
or denoising of higher co-dimension and non-boundary subsets. Notice that the use
of the flat norm with scale permits the choice of what scale is small (and hence
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x = a x = 2a

f(0) = f(2a) = 1

f(a) = 1− a

Figure 10: A maximizing form for the 3 circles example. We plot f for the form given
by f(x)dy. We are forced to use α = 1 and the Lipschitz form plotted here.

greatly diminished) and what scales are large and therefore preserved. In the case of
sets which are co-dimension 1 boundaries, we know that in a very precise sense, the
regularized surface given by support(T − ∂S) is the best λ-curvature approximation
to T . See [12, 1] for details.

4.5 Shape Statistics

We can use the L1TV algorithms to compute both the flat norm distance in shape
space and the flat norm decomposition that gives this distance. (As noted above, the
flat norm was previously suggested for shape comparisons in [6, 11] and then used
in [5] for the purpose of computing shape statistics.) Our observation permits the
use of the various algorithmic approaches to TV minimization for the calculation of
both the flat norm and the minimizers when those are of interest.

In particular, we can immediately and easily compute the flat norm of the differ-
ence T1 − T2 between any two shapes ∂Ω1 and ∂Ω2 represented by T1 and T2. The
decomposition that we get for free, so to speak, shows us where the difference is big
with respect to λ and where it is small. See Figure 12.

16



Figure 11: The green curve is the denoised version of the blue, where we have trans-
lated the green to make visualization easier.

-T1 T2 Optimal S

Figure 12: The flat norm via the L1TV functional provides us with both a distance
and an informative optimal decomposition into S and T1 − T2 − ∂S.
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5 Summary

The program suggested by the relatively simple observation of the relation between
L1TV and the flat norm promises many new benefits. In order to reap the full benefits,
there are challenges to be met that include efficient computation of the optimizing n-
forms (the dual formulation of the flat norm), extraction of the optimal decomposition
from the optimizing differential form (required for the generalization of L1TV), and
calculation of the gradient of F λ

CE(Σ(Ω M Ω∗, λ)) with respect to Ω (certain shape
statistics approaches require this). These, as well as the general expansion of the
above announcement (there are technical details!) is the subject of several papers
that are in preparation or in planning with collaborators Allard, Esedoḡlu, and Yin.
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